FANDOM


Solutions for Introduction to Electrodynamics by David J. Griffiths

ISBN: 013805326X

Chapter 1 Problems Edit

Problem 1.1 Edit

Problem 1.2 Edit

No. Assume A = i, B = j, C = i+ j, then

(A X B) X C =? A X (B X C)

(i X j) X (i+j) =? i X (j X(i+j))

k X (i+j) =? i X (-k + 0)

j - i =? j

Problem 1.3 Edit

70.52º or 109.47º depending on the body diagonals chosen

Problem 1.4 Edit

\hat{n} = \frac{6 \hat{x} + 3 \hat{y} + 2 \hat{z}}{7}\!

Problem 1.5 Edit

Derivation

Problem 1.6 Edit

Derivation

Problem 1.7 Edit

r = -\frac{2}{3} \hat{x} + \frac{2}{3} \hat{y} -\frac{1}{3} \hat{z},\!

Problem 1.11 Edit

a)

2 x \hat{x} + 3 y^2 \hat{y} + 4 z ^3 \hat{z},\!

b)

2 x y^3 z^4 \hat{x} + 3 x^2 y^2 z^4 \hat{y} + 4 x^2 y^3 z^3 \hat{z},\!

c)

e^x \sin y \ln z \hat{x} + e^x \cos y \ln z  \hat{y} + \frac{e^x \sin y }{z} \hat{z},\!

Problem 1.12 Edit

a)

x = -2, y = 3

b)

720

c)

-\frac{\sqrt{2}}{2} \hat{x} + \frac{\sqrt{2}}{2} \hat{y},\!

Problem 1.15 Edit

a)

0

Problem 1.16 Edit

0

Problem 1.25
Edit

a)

\nabla^2 T_a = 2

b)

\nabla^2 T_b = -3 \sin x \sin y \sin z

c)

\nabla^2 T_c = 0

d)

\nabla^2 \mathbf{v} = 2 \hat{x} + 6 x \hat{y}

Problem 1.26 Edit

Derivation

Problem 1.27 Edit

Derivation

Problem 1.32 Edit

48

Problem 1.42 Edit

a)

8

b)

40\pi

c)

0

Problem 1.43 Edit

a)

20

b)

-1

c)

0

d)

0

Problem 1.44 Edit

a)

3

b)

6

c)

1

d)

1 if a>b

0 if b>a

Chapter 2 Problems
Edit

Problem 2.1
Edit

Chapter 3 Problems
Edit

Problem 3.1 Edit


Edit

Chapter 4 Problems
Edit

Problem 4.1
Edit

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.